
1

The Difference Between API Gateways and Service Mesh

The Difference
Between API Gateways
and Service Mesh

by marco palladino

Why API Management and Service Mesh are
Complementary Patterns for Different Use Cases

2

The Difference Between API Gateways and Service Mesh

Content

Introduction

API Gateways

1. APIs as a Product

2. Service Connectivity

3. Full Lifecycle API Management

Service Mesh

1. Service Connectivity

API Gateway vs. Service Mesh

Cheat Sheet

Example: A Financial Institution

About the Author

3

5

7

9

11

13

17

19

22

23

25

3

The Difference Between API Gateways and Service Mesh

Introduction

For many years, API Management (APIM) — and
the adoption of API gateways — was the primary
technology used to implement modern API use
cases both inside and outside the data center. API
gateway technology has evolved a lot in the past
decade, capturing bigger and more comprehensive
use cases in what the industry calls “full lifecycle
API management.” It’s not just the runtime that
connects, secures and governs our API traffic on
the data plane of our requests but also a series
of functionalities that enable the creation, testing,
documentation, monetization, monitoring and
overall exposure of our APIs in a much broader
context — and target a wider set of user personas
from start to finish. That is, there is a full lifecycle
of creating and offering APIs as a product to users
and customers, not just the management of the
network runtime that allows us to expose and
consume the APIs (RESTful or not).

Then around 2017, another pattern emerged
from the industry: service mesh. Almost
immediately, the industry failed to recognize
how this pattern played with the API gateway
pattern, and a big cloud of confusion started
to emerge. This was in part caused by the
complete lack of thought leadership of pre-
existing APIM vendors that have failed to
respond adequately to how service mesh
complemented the existing APIM use cases.
It was also in part because service mesh
started to be marketed to the broader industry
by the major cloud vendors (first by Google,
later by Amazon and finally by Microsoft) at
such a speed that the developer marketing

4

The Difference Between API Gateways and Service Mesh

clout of this new pattern preceded the actual
mainstream user adoption, therefore creating a
misperception in the industry as to what service
mesh really was (developer marketing) and
was not (technology implementations). It was
almost like a mystical pattern that everybody
spoke about but very few mastered.

Over time, the technology implementations caught
up with the original vision of service mesh, and
more and more users implemented the pattern
and told their stories. This allows us to now have a
more serious rationalization as to what is service
mesh (and what it is not) and what is the role of
API gateways (and APIM) in a service mesh view
of the world.

Many people have already attempted to describe
the differences between API gateways and service
meshes, and it’s been commonly communicated
that API gateways are for north-south traffic and
service meshes are for east-west traffic. This
is not accurate, and if anything, it underlines a
fundamental misunderstanding of both patterns.

In this piece, I want to illustrate the differences
between API gateways and service mesh — and
when to use one or the other in a pragmatic and
objective way.

5

The Difference Between API Gateways and Service Mesh

API Gateways

The API gateway pattern describes an additional
hop in the network that every request will have
to go through in order to consume the underlying
APIs. In this context, some people call the API
gateway a centralized deployment.

Being on the execution path of every API request,
the API gateway is a data plane that receives
requests from a client and can enforce traffic and
user policies before finally reverse proxying those
requests to the underlying APIs. It can — and most
likely will — also enforce policies on the response
received from the underlying API before proxying
the request back to the original client.

An API gateway can either have a built-in control
plane to manage and configure what the data
plane does, or both the data plane and the
control plane can all be bundled together into the
same process. While having a separate control
plane is certainly better, some API gateway
implementations were able to thrive with a DP+CP
bundle in the same process because the number
of API gateway nodes we would be deploying was
usually of a manageable size and updates could
be propagated with existing CI/CD pipelines.

The API gateway is deployed in its own instance
(its own VM, host or pod) separate from the client
and separate from the APIs. The deployment is
therefore quite simple because it is fully separated
from the rest of our system and it fully lives in its
own architectural layer.

6

The Difference Between API Gateways and Service Mesh

API gateways usually cover three primary API use
cases for both internal and external service connectivity
as well as for both north-south (outside the datacenter)
and east-west (inside the datacenter) traffic.

7

The Difference Between API Gateways and Service Mesh

1. APIs as a Product

The first use case is about packaging the API as a
product that other developers, partners or teams
will consume.

The client applications that they build can initiate
requests from outside of the organization (like in the
case of a mobile application) or from inside the same
company (like in the case of another product, perhaps
built by another team or another line of business).
Either way, the client applications will run outside of the
scope of the product (that’s exposing the API) that they
are consuming.

This use case is very common whenever different
products/applications need to talk to each other,
especially if they have been built by different teams.

8

The Difference Between API Gateways and Service Mesh

When offering APIs as a product, an API gateway
will encapsulate common requirements that govern
and manage requests originating from the client
to the API services — for example, AuthN/AuthZ
use cases, rate-limiting, developer on-boarding,
monetization or client application governance.
These are higher level use cases implemented
by L7 user policies that go above and beyond the
management of the underlying protocol since they
govern how the users will use the API product.

The APIs exposed by an API gateway are most
likely running over the HTTP protocol (i.e., REST,
SOAP, GraphQL or gRPC), and the traffic can be both
north-south or east-west depending if the client
application runs inside or outside the data center.
A mobile application will run mostly north-south
traffic to the API gateway, while another product
within the organization could be running east-west
traffic if it’s being deployed in the same data center
as the APIs it’s consuming. The direction of traffic is
fundamentally irrelevant.

API gateways are also used as an abstraction
layer that allow us to change the underlying APIs
over time without having to necessarily update
the clients consuming them. This is especially
important in those scenarios where the client
applications are built by developers outside of the
organization that cannot be forced to update to the
greatest and latest APIs every time we decide to

9

The Difference Between API Gateways and Service Mesh

update them. In this instance, the API gateway can
be used to keep the backwards compatibility with
those client applications as our underlying APIs
change over time.

2 - Service Connectivity

The second use case is about enforcing networking
policies to connect, secure, encrypt, protect and
observe the network traffic between the client and the
API gateway, as well as between the API gateway and
the APIs. They can be called L7 traffic policies because
they operate on the underlying network traffic as
opposed to governing the user experience.

Once a request is being processed by the API gateway,
the gateway itself will have to then make a request
to the underlying API in order to get a response (the
gateway is, after all, a reverse proxy). Usually we want
to secure the request via mutual TLS, log the requests,
and overall protect and observe the networking
communication. The gateway also acts as a load
balancer and will implement features like HTTP routing,
support proxying the request to different versions of

10

The Difference Between API Gateways and Service Mesh

our APIs (in this context, it can also enable blue/green
and canary deployments use cases), as well as fault
injection and so on.

The underlying APIs that we are exposing through
the API gateway can be built in any architecture
(monolithic or microservices) since the API gateway
makes no assumption as to how they are built as long
as they expose a consumable interface. Most likely the
APIs are exposing an interface consumable over HTTP
(i.e., REST, SOAP, GraphQL or gRPC).

11

The Difference Between API Gateways and Service Mesh

3. Full Lifecycle API Management

The third use case of an API gateway is being one
piece of a larger puzzle in the broader context of API
management.

As we all know, managing the APIs, their users and
client applications, and their traffic at runtime are
only some of the many steps involved in running a
successful API strategy. The APIs will have to be
created, documented, and tested and mocked. Once
running, the APIs will have to be monitored and
observed in order to detect anomalies in their usage.
Furthermore, when offering APIs as a product, the APIs
will have to provide a portal for end users to register
their applications, retrieve the credentials and start
consuming the APIs.

12

The Difference Between API Gateways and Service Mesh

This broader experience, which is end-to-end and
touches various points of the API lifecycle (and
most likely different personas will be responsible for
different parts of the lifecycle), is called full lifecycle
API management, and effectively most APIM solutions
provide a bundled solution to implement all of the
above concerns in one or more products that will in
turn connect to the API gateway to execute policy
enforcement.

13

The Difference Between API Gateways and Service Mesh

Service Mesh

With service mesh, we are identifying a pattern
that fundamentally improves how we build
service-to-service connectivity among two or
more services running in our systems. Every
time a service wants to make a network request
to another service (for example, a monolith
consuming the database or a microservice
consuming another microservice), we want to take
care of that network request by making it more
secure and observable, among other concerns.

Service mesh as a pattern can be applied on any
architecture (i.e., monolithic or microservice-
oriented) and on any platform (i.e., VMs,
containers, Kubernetes).

In this regard, service mesh does not introduce
new use cases, but it better implements existing
use cases that we already had to manage
prior to introducing service mesh. Even before
implementing service mesh, the application
teams were implementing traffic policies like
security, observability and error handling within
their applications so they could enhance the
connectivity of any outbound — or inbound —
network requests that their application would
either make or receive. The application teams were
implementing these use cases by writing more
code in their services. This means that different
teams would be re-implementing the same
functionality over and over again — and in different
programming languages, creating fragmentation
and security risks for the organization in managing
the networking connectivity.

14

The Difference Between API Gateways and Service Mesh

With the service mesh pattern, we are outsourcing
the network management of any inbound or
outbound request made by any service (not just
the ones that we build but also third-party ones
that we deploy) to an out-of-process application
(the proxy) that will manage every inbound and
outbound network request for us, and because it
lives outside of the service, it is by default portable
and agnostic in order to support any service written
in any language or framework. The proxy will be
on the execution path of every request and it’s
therefore a data plane process, and since one of
the use-cases is implementing end-to-end mTLS
encryption and observability, we would run one
instance of the proxy alongside every service so
that we can seamlessly implement those features

Prior to service mesh, the teams are writing and maintaining code
to manage the network connectivity to third-party services. Different

implementations will exist to support different
languages/frameworks.

15

The Difference Between API Gateways and Service Mesh

without requiring the application teams to do too
much work and abstracting those concerns away
from them.

We run one instance of the proxy (in peach) alongside every instance
of our services.

Because the data plane proxy will run alongside
every replica of every service, some will call service
mesh a decentralized deployment (as opposed
to the API gateway pattern, which is a centralized
deployment). Also, since we are going to be having
extra hops in the network and in order to keep
the latency at a minimum, we would run the data
plane proxy on the same machine (VM, host, pod)
as the service that we are running. Ideally, if the
benefits of the proxy are valuable enough and the
latency low enough, the equation would still turn in
favor of having the proxying as opposed to having
fragmentation in how the organization manages the
network connectivity among our services.

16

The Difference Between API Gateways and Service Mesh

The proxy application acts as both a proxy when the
request is outgoing and as a reverse proxy when
the request is incoming. Because we are going to
be running one instance of the proxy application
for each replica of our services, we are going to
be having many proxies running in our systems.
In order to configure them all, we would need a
control plane that acts as the source of truth for the
configuration and behavior we want to enforce and
that would connect to the proxies to dynamically
propagate the configuration. Because the control
plane only connects to the proxies, it is not on the
execution path of our service-to-service requests.

17

The Difference Between API Gateways and Service Mesh

The service mesh pattern, therefore, is more invasive
than the API gateway pattern because it requires us
to deploy a data plane proxy next to each instance
of every service, requiring us to update our CI/
CD jobs in a substantial way when deploying our
applications. While there are other deployment
patterns for service mesh, the one described above
(one proxy per service replica) is considered to be
the industry standard since it guarantees the best,
highest availability and allows us to assign a unique
identity (via a mTLS certificate) to every replica of
every service.

With service mesh, we are fundamentally dealing
with one primary use case.

1. Service Connectivity

By outsourcing the network management to a
third-party proxy application, the teams can avoid
implementing network management in their own
services. The proxy can then implement features
like mutual TLS encryption, identity, routing, logging,
tracing, load-balancing and so on for every service and
workload that we deploy, including third-party services
like databases that our organization is adopting but not
building from scratch.

Since service connectivity within the organization will
run on a large number of protocols, a complete service
mesh implementation will ideally support not just
HTTP but also any other TCP traffic, regardless if it’s
north-south or east-west. In this context, service mesh
supports a broader range of services and implements
L4/L7 traffic policies, whereas API gateways have
historically been more focused on L7 policies only.

18

The Difference Between API Gateways and Service Mesh

From a conceptual standpoint, service mesh has a
very simple view of the workloads that are running in
our systems: everything is a service, and services can
talk to each other. Because an API gateway is also a
service that receives requests and makes requests,
an API gateway would just be a service among other
services in a mesh.

Because every replica of every service requires a data
plane proxy next to it and the data plane proxies are
effectively client load-balancers so they can route
outgoing requests to other proxies (and therefore
other services), the control plane of a service mesh
must know the address of each proxy so that the L4/
L7 routing capability can be performed. The address
can be associated with any meta-data, like the
service name. By doing so, a service mesh essentially
provides a built-in service discovery that doesn’t
necessarily require a third-party solution. A service
discovery tool can still be used to communicate
outside of the mesh but most likely not for the traffic
that goes inside the mesh.

19

The Difference Between API Gateways and Service Mesh

API Gateway vs. Service Mesh

It is clear by looking at the use cases that there
is an area of overlap between API gateways
and service meshes, and that is the service
connectivity use case.

The service connectivity capabilities that service
mesh provides are conflicting with the API
connectivity features that an API gateway provides.
However, because the ones provided by service
mesh are more inclusive (L4 + L7, all TCP traffic, not
just HTTP and not just limited to APIs but to every
service), they are in a way more complete. But as we
can see from the diagram above, there are also use
cases that service mesh does not provide, and that

20

The Difference Between API Gateways and Service Mesh

is the “API as a product” use case as well as the full
API management lifecycle, which still belong to the
API gateway pattern.

Since service mesh provides all the service
connectivity requirements for a broader range
of use-cases (L4+L7), it is natural to think that it
would take over those concerns away from the API
gateway (L7 only). This conclusion is valid only if we
can leverage the service mesh deployment model,
and as we will explore, this is not always the case.

One major divergent point between the two patterns
is indeed the deployment model: in a service
mesh pattern, we must deploy a proxy data plane
alongside every replica of every service. This is easy
to do when a team wants to deploy service mesh
within the scope of its own product, or perhaps its
own line of business, but it gets harder to implement
when we want to deploy the proxy outside of that
scope for four reasons:

1. Deploying a proxy application alongside every
service of every product within the organization
can be met with resistance, since different
products, teams and lines of business may have
fundamentally different ways to build, run and
deploy their software.

2. Every data plane proxy must initiate a connection
to the control plane, and in certain cases, we don’t
want -- or we can’t -- grant access to the control
plane from services that are deployed outside of the
boundaries of a product, a team or a line of business
within the organization.

21

The Difference Between API Gateways and Service Mesh

3. It is not possible to deploy the proxy data plane
alongside every service because we do not control
all the services in the first place, like in the case of a
third-party application built by a developer, customer
or partner that is external to the organization.

4. Services deployed in the same service mesh will
have to use the same CA (Certificate Authority)
in order to be provided with a valid TLS certificate
to consume each other, and sharing a CA may
not be possible or desirable among services that
belong to different products or teams. In this
instance, two separate service meshes (each one
with its own CA) can be created, and they can
communicate to each other via an intermediate
API gateway.

Given that API gateways and service meshes focus
on different use cases, I propose the following cheat
sheet to determine when to use an API gateway and
when to use a service mesh, with the assumption
that in most organizations, both will be used since
both use cases (the product/user use cases and the
service connectivity one) will have to be implemented.

22

The Difference Between API Gateways and Service Mesh

Cheat Sheet

It is clear by looking at the use cases that there
is an area of overlap between API gateways
and service meshes, and that is the service
connectivity use case.

We will use an API gateway to offer APIs “as a
product” to internal or external clients/users via a
centralized ingress point and to govern and control
how they are being exposed and on-boarded via a
full lifecycle APIM platform. Commonly used when
different applications need to talk to each other, and
also used to create an abstraction layer between the
clients and the underlying APIs.

We will use service mesh to build reliable, secure
and observable L4/L7 traffic connectivity among all

23

The Difference Between API Gateways and Service Mesh

the services that are running in your systems via a
decentralized sidecar deployment model that can be
adopted and enforced on every service. Commonly
used within the scope of an application, and to
create point-to-point connectivity among all the
services that belong to the application.

Most likely, the organization will have both of these
use cases, and therefore an API gateway and service
mesh will be used simultaneously.

Example: A Financial Institution

Given the chart above, we can provide the
following example.

It is very common for an organization to have
different teams building different products, and
these products will have to talk to each other
(i.e., a financial institution would have a “banking
product” to perform banking activities and a
“trading product” that would allow trading on the
stock market, but the two products will have to
communicate to share information between them).

These teams will also decide at one point in the
roadmap to implement service mesh in order
to improve the service connectivity among the
services that are making up the final product.
Because different teams run at different speeds,
they will implement two service meshes that are
isolated from each other: “Service Mesh A” and
“Service Mesh B.”

24

The Difference Between API Gateways and Service Mesh

Let’s assume that in order to be highly available,
both products are being deployed on two different
data centers, “DC1” and “DC2.”

The banking team wants to offer its service as a
product to their internal customer, the trading team.
Therefore they want to set up policies in place to
on-board the team as if it was an external user via an
internal API gateway. The mobile team also will have
to consume both products, and they will have to go
through an edge API gateway ingress point in order
to do that. The architecture would look like this:

25

The Difference Between API Gateways and Service Mesh

About the Author

Marco Palladino is an inventor, software developer
and entrepreneur. He is the CTO and co-founder of
Kong, the most widely adopted open source API
platform.

Kong provides API gateway and service mesh
products via Kong Gateway and Kuma, both open
source and freely downloadable.

Trusted by startups to Fortune 500 enterprises,
Kong offers the leading service control platform
that gives technology teams the architectural
freedom to power connections for modern
software architectures and applications across
clouds. Kong’s customers span across all
industries, including Cargill, WeWork, SoulCycle,
Yahoo! Japan, Verifone and Just Eat.

Konghq.com

Kong Inc.
contact@konghq.com

150 Spear Street, Suite 1600
San Francisco, CA 94105
USA

